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I. INTRODUCTION 

The observed isotropy of the microwave background radiation (MBR) puts 

stringent limits on parameters of cosmological models. The requirement of reconcili- 

ation of low level MBR fluctuations with the amplitude of the density perturbations 

necessary to produce galaxies today is a powerful tool for eliminating cosmological 

scenarios. 

In order to calculate the small-scale MBR fluctuations one has to take the dy- 

namics of the decoupling into account and the theory of this process is now relatively 

well known 111. When dealing with fluctuations on scales larger than the horizon at 

the decoupling we can assume that decoupling occurs instantanuously. The distance 

that photons can travel is smaller than the characteristic length of the perturbation 

and the details of the decoupling process cannot influence the MBR pattern. How- 

ever, there is another problem with the large scales. Because of the freedom of making 

gauge transformations (i.e. changing the correspondence between the points in the 

physical spacetime and the points in the undisturbed background) the perturbations 

of physical quantities are different in different gauges and can contain the spurious 

gauge modes. 

The most elegant way of treating cosmological perturbations was proposed 

by Bardeen [2] and is based on using the gauge-invariant quantities that within 

the horizon are perturbations of well known physical quantities. Since the paper by 

Bardeen some developments of his formalism were done e.g. on the case of uncoupled 

fluids in the flat universe [3] and the system of fluid + collisionless gas [4] or on the 

case of matter described by the massive field [5]. The elements of the formalism were 

used to find the large-scale anisotropy of MBR by Abbott and Wise [S, 71 and Bond 

and Efstathiou [S]. 
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We should realize that any calculations involving the scales larger than the 

horizon performed in a particular gauge have to be accompanied by the proof that 

the results are gauge invariant. Writing the formulae in gauge-invariant quantities 

after deriving them in choosen gauge is not sufficient, even if the results look correct. 

In this paper we present the calculation leading to formulae for the large- 

scale anisotropy of the MBR in the general (nonflat,multicomponent) cosmological 

model based on the Robertson-Walker metric. The formulae for scalar, vector and 

tensor perturbations are given and those for scalar ones are analysed in some specific 

models of the Universe. For the general flat models we decompose the large-scale 

MBR fluctuations into multipoles and calculate the amplitude of the I-th multipole 

as a function of the baryonic density and velocity perturbation fields. 

In Sec.11 we define perturbation quantities used later and give the equations 

of evolution of the background and the equations of motion for the perturbations. 

In Sec.111 the MBR anisotropies are found. The results for some specific cases are 

discussed in Sec.IV. Sec.V presents the formalism of the multipole decomposition of 

the MBR pattern. Finally, Sec.VI contains concluding remarks. 

II. DEFINITIONS AND EQUATIONS OF MOTION 

We try to follow the notation of original Bardeen’s paper [2]. The background 

Robertson-Walker metric is: 

da2 = gij dz’dz” = S’(T)( -d? + 3g,B db’dz@) (1) 

where i, j... = 0 12 3, a,@... = 1 2 3. The derivative with respect to the conformal 

time will be denoted by a dot, the covariant derivative with respect to gij by a 

semicolon and with respect to 3gaa by a vertical bar. 
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We assume that the universe contains N ideal fluids with the unperturbed 

energy-momentum tensors: 

G: = -Eclo, T,; = P.0 6; (2) 

where a = l...N and EoO and P,e are the background energy density and pressure 

of the ideal fluid a. The more careful approach would be to describe the collisionless 

components by the means of a distribution function [a]. 

We denote (ci, is the speed of sound): 

P 00 UJ.=-, 
dpao 

E 
cf& = - 

00 d&o 

and assume that the fluids are coupled only by gravity. 

The equations governing the evolution of the background are: 

(34 

(34 

where K = -l,O, 1 is the scalar of curvature in open, flat and closed universe re- 

spectively (units c = 8nG = 1). We can also incorporate the nonzero cosmological 

constant in the model: Eao = - P.0 = A. 

Perturbations can be classified according to their transformation properties 

under spatial coordinate transformations of the background spacetime &s scalar, vec- 

tor and tensor perturbations. The time- and spatial-dependent parts of pertur- 

bation quantities can be separated thanks to the homogeneity and isotropy of the 
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background. The spatial parts may be decomposed into the solutions of the gener- 

alized Helmholtz equations. For now, we will restrict our analysis to the case of the 

perturbations described by the single mode. 

A. Scalar perturbations 

Scalar harmonics Q(s@) are solutions of the equation: 

Q’” /a + PQ = 0 (4) 

For a flat Robertson-Walker universe the Q’s are conveniently taken to be 

plane waves. 

The vector and traceless tensor quantities are constructed by: 

Qtx = -;Q,, 

Qaa = $Q,ap + 5 3g,/1 Q 

(54 

(5’4 

The metric perturbations are written aa: 

goo = -S’(l + 2AQ) (64 

goa = -S’BQ, W 

sao = S’[(l + 2fbQ)3gap + SH,Q,a] (64 

Let u6 be the four-velocity of the rest frame of fluid a relative to the coordinate 

frame (the rest frame is the frame in which the energy flux of fluid a vanishes). We 

assume that to 0-th order all u6, a = l...N are the same. The 1-st order perturbations 

of the velocity of the fluid a are: 

u; = $(l- AQ) 

u,” = &Q9 
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The perturbations in the energy-momentum tensor are: 

Tag = -E,o(l + 6.Q) 

Ta: = -(Eao + Pao)v,QQ 

Tcz: = (Go + pao)(vo - B)Q, 

Ta; = pao[(l + "~aQ)6; + TT~Q;] 

and the entropy perturbation is: 

&, % = TL.0 - - a 
wa 

(84 

WI 

(84 

(84 

(9) 

The general gauge transformation of the wavenumber k is: 

? = T + T(r)Q(z”) (104 

P = a?’ + L(r)Qa(zP) (lob) 

The gauge-invariant perturbation quantities are TT~, r)O and: 

~*=A+~~+~~B-~(~~+~~*) 

ip~ = HL + iHT + ;;B - $;& 

co =6,+3- ‘:w.;(v”--B) 

1. 
usa = va - -HT 

k 

(114 

OW 

W) 

(114 

The equations of the evolution of perturbations derived from the Einstein 

equations are: 

2(ka;a3K) ‘Pe = 5 Eaoeo 
a=1 

(124 

W) -$(@A + @H) = &!,O?ITo 
a=1 
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And from the conservation equations T,;.,, = 0 we obtain (a = l...N): 

(&0~aS3)’ + 
3(E,o + pao)S3 

k {[(f)‘- (;)‘I us.+kr,+;k%sa}+ 

-353; 
‘[ 

pa0 + Pao)@ A-;(l-g)P.O”To] =o (134 

s 
irsn + -Vs. = k@A f 

S 
-ff--(c&, + w,qa) - ik (I- f$) err,. 
lfw. WI a 

The equation (13a) for the case K = 0 was first derived by Abbott and Wise [3]. 

B. Vector perturbations. 

In this mode the quantities being scalars under spatial coordinate transforma- 

tions remain unperturbed. The vector harmonics Q(l)“ are solutions of: 

Q"'$ + k2Q(‘)a = o (14) 

The tensor quantity is obtained by: 

Q(+@ = -&Q(l)“‘@ + Q’l’p’“) 

In analogy to the scalar perturbations we have: 

gOa zz #B(‘)Qh’) 

gap = Sz(3g,8 + 2H$?Qh’B)) 

u,” zz #Q(‘b 

T,; = (E.0 + P,o)(v~‘) - B(‘))Qh’) 

2-0; = -(E,o + P.o)v~‘)Q(‘)” 

2’s; = Pao(6; + s#Q;‘“) 

(15) 

06) 
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The allowed gauge transformation is S” = z” + L(‘)(~)Q”(z@) and the gauge- 
invariant quantities are r$?i and: 

QI = B(l) - ;k&l’ (174 

or “C. = “y - q a (17b) 

The equations of motion are: 

k’2;fK Q = &ho + Pao)vca 
0=1 

s k wa 
fkh + y(l- 34,)V& = -- ---Y+; 

21+w. 

(1’34 

(lW 

C. Tensor perturbations. 

Now only tensor quantities are perturbed and the tensor harmonics are solu- 

tions of: 

Qt2);“’ + kaQ@)“@ = 0 (19) 

We have: 
gap = sa(3g,,g + 2I@)Q$) 

%a” = pao(6; + +~Qf’“) 
(20) 

The quantities HP) and ST!$~ are automatically gauge-invariant. The equation 

of motion is: 

fig) + &$?) + (kz + 2K)# = 2 
S T s $Pao7g 

0=1 
(21) 



III. THE TEMPERATURE OF MBR IN THE PERTURBED UNIVERSE 

Our aim here is to find the MBR pattern T~(0,+4) (subscript R denotes 

reception and subscript E - emission) in a cosmological model based on a Robertson- 

Walker metric if the solutions of the perturbation equations for density and velocity 

fields are known. We assume that the decoupling is instantanuous and that we are 

interested in large angular scales only. 

The temperature of the MBR coming from a given direction is determined 

by the redshift that photons acquired from emission till reception. The density and 

velocity perturbations of the fluids filling the universe cause the perturbations in the 

metric that in turn influence the motion of light, resulting in redshift differences of 

photons coming from different directions. (The interaction of light and matter can 

also have the direct form of scattering, if the intergalactic medium was reionized in 

the epoch of galaxy or star formation). 

In order to obtain the pattern of the MBR in a perturbed universe we should 

in principle integrate the Boltzmann equation for a generalized, gauge-invariant dis- 

tribution function of photons through the decoupling phase and further, until today. 

However, details of the decoupling are important only for small angular scales, and 

in this case the use of gauge-invariant quantities is not necessary. For large scales the 

opposite is true. By large angular scales we mean scales larger than those subtended 

today by the light rays emitted at decoupling from two points at seperation equal 

to size of observable universe at decoupling (i.e. twice the distance to the horizon). 

This angular scale is [Q]: 

eHz30 (F n,>? 

where .Z is the redshift of the decoupling and Dn is the density parameter today. 
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Therefore a suitable approximation is to follow the movement of the single 

photon emitted from the last scattering hypersurface using the gauge-invariant quan- 

tities. 

The light moves along the null-like geodesics z’(X) where X is the affine pa- 

rameter. The null vector tangent to the geodesic is: 

ki = g 
dX ’ 

k’= (v,PQ), k;k’ = 0 (22) 

We write : 

u = tY(l -M) pa =&=+;a (23) 

9 
where EM and Pa are the first order corrections to componenets of vector k’. The 

equation of motion is: 

Dk’ dk’ 
- = dX + &kkk’ = 0 
dX (24) 

The temperature of the MBR now observed is: 

(25) 

where usi is the 4-vector of velocity of observer at rest relative to baryonic fluid (ob- 

servers are made of baryons). We take no account of local, gravity-induced motions 

e.g. of the Galaxy, that result in additional dipole term. 

It is convenient to introduce a new parameter s(X) (the derivative with respect 

to s will be denoted by a prime) such that: 

dX S= -- 
ds- Si’ 

From (22) and (24) we obtain in the 0-th order: 
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Defining & = - e VP where R” is the spatial unit vector (R”R, = 1) in direction 

of observation and using the normalization & = 1 we obtain the solutions for the 

lightlike geodesics to 0-th order: 

r=TE++ (284 

~“=R”(TR--‘E-S) 

dR” -= 
ds 

3r;7RPR1 

(284 

(284 

where 

d a Rd -= -- 
ds a7 aZp' 

The coordinates of the emission event are: s = 0, 7 = rE, Z$j = Rj$(rn-7~) 

and of the reception event: s=TR-TB, ?- = Q, z; = 0. 

The equations to l-st order look differently for scalar, vector and tensor per- 

turbations. 

A. Scalar perturbations. 

Using (22) and (24) to 1-st order we obtain: 

M’ = AQ f 2k-%?&” f :BQ + &Q + (AT - kB)Q,BRaR@ (29) 

and from (25): 

- (kvb - I;rT)QaaR”R@ 

where the integral is along the 0-th order lightlike geodesic. 
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The above formula is gauge invariant because S transforms under (lOa) as 

S(i) = S(r)‘(l + $TQ) and then we should be able to express it using only the 

gauge-invariant variables. 

In our simplified model of decoupling the emission of radiation occurs on 

the hypersurface of the constant density of free electrons that couple to photons by 

Thomson scattering. This density is a function of the local temperature and density 

of baryons and thus for general perturbations the hypersurface of emission is neither 

the hypersurface of constant temperature nor that of constant baryon density. In 

the presence of perturbations the emission in a given point is space occurs in the 

moment rrrO + AT where AT is a function of perturbations. Denoting the density of 

free electrons at the emission by Ned and the moment of emission in the 0-th order 

by the subscript E,, we have on the hypersurface of last scattering: 

neE = cm& = %(LQ, + AT) = n,o(r~~ + Ar) . (1 + 6.8) (31) 

so: 

AT = -2 b,Q 
e 

where 6. is a perturbation of density of electrons and in general: 

n. = f@b)S(T) 

(32) 

(33) 

Using this functional form we can express AT as a function of the perturbations 

of baryons and photons (E7 = ~2’~). The result is: 

;a,= L6bQ + 
3+D 

where: 



In the simplest model of decoupling we can use the Saha formula for the 

fractional’ionization [lo] and we obtain D N $j + & where B = 13.6 eV and for 

TE =3500K, Du47. 

At the moment of emission: 

SE=SE~ l+gAr 
(‘1 E 

Now we can rewrite (30) in gauge-invariant quantities. We define: 

TR - TRY 

R= TRY ' 

to obtain: 

TRo zz y 

R 
- 

/[(’ 
~+@H-@A QIpR“ 

> 
ds 

E 1 
where: 

(36) 

(37) 

(381 

(F),G [(~~b+4(3~D)“)0-~~~(Ys,-YQb)O] (3Q) 
E 

and we used Ws = 0, UL, = i and the fact that any part of TR independent of the 

direction of observation can be incorporated into the definition of TR,, . 

This is the explicitly gauge-invariant form of the temperature fluctuations in 

the general case. 

In the most popular (and suggested by many theories of the very early Uni- 

verse) case of adiabatic perturbations we have 6, = $6, and the initial fluctuations 

of temperature reduce to +EbQ at the emission. We will analyse further this case 

only, and, as we will see this term can be dropped. However, we should emphasize 
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that in nonadiabatic models the initial fluctuations given by the formula (39) can be 

important - for example the term - c7 is responsible for the increase of the large- 

scale angular fluctuations in the model of isocurvature axion perturbations analysed 

by Efstathiou and Bond [8]. 

We can put c ib = 0 if we are interested in scales larger than the baryon Jeans 

mass. This is the case because for X 2 (Ct)E this Jeans mass is much less than the 

mass in a sphere of diameter - A. The equations of motion (13) for the baryonic 

perturbations are then: 

i,,+3 [(;)‘- ($1 ~+36r,-3;QA+kttSb=o (4Oo) 

s 
hb + 3;“Sb = NA W’b) 

We can use these equations to rewrite (38) in the form: 

(~)R=(~ebQ)E+~[~(ia+kusb)Q+~Q,~sRDRd]ds (41) 

E 

The first term represents the influence of the density perturbations at the 

emission and can be dropped because in our case is much smaller than the integral 

term (see Sec.lV). The integral term describes how the motion of light is influenced 

by the geometry perturbations generated by all density and anisotropic pressure 

perturbations present in the model (see (12)) and described by the baryonic quantities 

(/ $Usb( is the magnitude of shear of the baryonic velocity field). Some specific cases 

of (41) are described in the next section. 
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B. Vector perturbations. 

An analysis similar to the one performed before gives us the result: 

(!K,h”=/” (f&Q:‘R” + kv$Q$R”Rp)ds 

E 

C. Tensor perturbations. 

(g); = -f~~‘Qb;jR”R& 

E 

(42) 

(43) 

The vector and tensor cases will not be analysed further. 

IV. SPECIFIC CASES OF THE SCALAR PERTURBATIONS 

Although the general formula describing the MBR pattern in the presence of 

scalar perturbations (41) is very simple the troubles arise with its use because of the 

complicated form of the equations of motion in the general csse (12, 13). However, 

we can simplify them in some specific models. 

First of all we expect that the anisotropic stress and entropy perturbations 

in any component of the universe operate only at very early stages of the evolution. 

Thus we can omit them in our analysis. Now the equations of motion are (a=l...N): 

(J%oG, s3y + 3(&o + Pa&S3 
k { [(;)‘- (;)‘I w.+k6,+;kzvsa}+ 

+ 3S3;(E.o + P,,,)aH = o (444 

s @ia k, + -us,, = -kaH + - 
S l+w,ca 
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The next simplification is obtained if we are interested in the models domi- 

nated by nonrelativistic components with P,,o = 0 (e.g. CDM models) since decou- 

pling. If we omit the radiation and relativistic neutrinos in the equations of motion, 

we have (a=l...N): 

2(kZ e33K)S $ “” = ’ 
ho 

s 1 
‘So + ~“s” = - 2k (1 - g) S c=l 

(454) 

(4W 

V, = E,oS3 are constants closely related to the present density parameters 

CR0 (Hn is the Hubble constant measured today): 

&OR 
i-,& = - = 

V, 

3H:, 
5 v, - 3Ks~ 
c=1 

(46) 

In the case K = 0 suggested by the inflationary scenarios we have 

S2, = const = G& and we denote the sum of all V, by V : 

~,(l+~)+kug.(l+~)+~~n.c.=O (474) 

02s 

L+ 
c90 + pa = - 2kS c=l ~-&l,E, 

Greatly simplified equations of motion are obtained from (45a,b) if iV = 1 or 

all & c = l...N are equal. For baryons: 

ib+ 1-g kvsb=O 
( > 
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This is the case in most of the dark matter scenarios - on scales larger than 

the Jeans~ mass the baryons sink in the potential wells of the dark component. In a 

few expansion times all the cc’s become equal. Then the second equation of motion 

is: 
s V 

vsb+~VSb=-2k(1+)s <b (484 

Now we can write the formula (41) under the assumption of equal c,‘s: 

(F),= (+bQ)E- ,,lgK~~b(KQ+Q,usR’RB)ds (49) 

In the flat universe K = 0, the covariant derivatives become normal and Q is 

taken to be a plane wave with the wave vector ka: Q = exp(ik,z=). From (49) we 

obtain: 

(F), = (~raB)R+~~~b(lr.R=)aQds 

E 

(50) 

In this case the equation for density perturbations has the solutions: 

tb = A? + BT-~ (51) 

For the growing mode ss = csE(+)s the integral in (50) can be integrated by 

parts: 

1 
= ~~bE?!E+ $ [~R(R”Q,, )R - ~E(R~Q,~ )E + QR - QE] (52) 

E 

The comoving coordinate distance to the horizon at rE is equal rE. Then the 

criterion for the comoving scale k to be larger than the horizon at rE is kTE < 1. kr 

this regime we can drop the first term because it is much smaller than the integral 
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term. (In fact when the first term is important, on scales krE 2 1, it does not look 

so simple). We can incorporate the term u QR into the definition of TR,, . This gives: 

This is the well known result of Sachs and Wolfe. 

V. MULTIPOLE DECOMPOSITION 

The anisotropies of the MBR calculated in the cosmological models can be 

compared with the limits from observations to restrict the parameters of these models. 

For the large-scale anisotropies the convenient quantities are the amplitudes of the 

multipoles in the decomposition of the function (F), (0,d). In further analysis we 

will restrict ourselves to the case of the flat universe. 

We usually assume that the field of the density perturbations of all components 

consists of the sum of plane waves with random wave vectors and phases. The 

amplitude of the wave with the wave vector kP is assumed to be the function of the 

modulus of the wave vector only, usually power law at the prescribed moment. 

The power law behavior is understandable on scales smaller than the horizon 

but its continuation on scales larger than the horizon is not obvious. This is because 

there is no unique choice of gauge-invariant quantity for density perturbations. How- 

ever, we argue that we can assume the continuation of the functional behavior for 

the used here quantity s (this is e m in Bardeen’s notation), because it is uniform 

on scales smaller and larger than the horizon (Bardeen’s cs is not) and because it 

directly couples to the potential @n (see (12a)). 
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Some spectra that behave as power laws at the time of horizon crossing at a 

given scale become substantially distorted (e.g. CDM spectra) at decoupling. There- 

fore we will assume the general functional dependence of the amplitude of density 

perturbations at a given scale at the emission. The single plane wave is then replaced 

by the sum: 

or.@ (54) 

Our initial conditions are the density perturbations at decoupling. We assume 

that the equations of motion were solved and we can write the appriopriate form of 

Q(k) and wsb(k) for all r~ 5 r 5 rn. 

Now the formula (41) for the flat universe can be written in the form: 

where 6~ is the cosine of the angle between the wave vector c and the direction of 

observation R’. 

Our aim is to 6nd the coefficients of the decomposition: 

6T 

( > ?; R = gm”PL or” = JYT (Q* (56) 

where C = (0,d). 

We use the following mathematical formulae: 

Q) 

eisi = &i’(21+ l)jr(kz)Pr(&) 

E$(E,-1 = &lalFi+2(~~) + ClWZ) + 4R-4EB)l 

N&) = & m~lWWW) 
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where: 

bl = v+l)(l+2) (I+l)s P l(l - = = 1) 
21+3 ’ c’ 21-t 3 + 21 -- 1’ dl 21 - 1 (60) 

and fJc = (05, +,-) are the angular coordinates of the vector k’. 

In (56) we decompose the plane waves into a series of Legendre polynomials, 

which in turn are represented by the spherical harmonics. We then integrate over 

dR. The result is: 

a;” = 4d c Al(k)Y*;“(CiE) 
Z#O 

(‘51) 

where: 

R 

At(k) = 

/( [ 

5 b(k) + kvsb(k)] jr(h)+ 

E (‘321 

+ kllsi(f) [drjh(kz) - crjc(kz) + 61jt+l(kz)] ds 

Thii result can be generalized on the case of nonadiabatic models by simply 

adding to ap the contribution from the decomposition of initial fluctuations (39). 

The quantity used to compare with observations is: 

(4 = +m (‘33) 

(in fact for a given 1 all a;L are statistically independent with the same expectation 

values). We use the assumption that the phases of Q(k) and usb(k) are random and 

change the sum over k’ into the integral: 

E --+ / k’dkz (‘34) 

to obtain: 

(a,)’ = 4~ / k’/A,(k)l’dk 

0 

(65) 
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The cutoff k,,, reflects the limits of our simplified model. They can be related 

to the horizon size and the scale of the Silk damping of baryonic perturbations, but 

another requirement for the small scales is not to be smaller than the scales that 

are nonlinear today. Anyway we should expect the results to be practically cutoff- 

independent for small 1 (if k,,, is large enough) because small scale perturbations 

averaged over large scales give the result m 0. 

The formula (62) is simplified in the case of the universe dominated by the 

nonrelativistic matter such that all E,, e = l...N are equal (or N = 1) because then 

ib + kvsb = 0 and: 

R 

A44 = -& 1 ’ a(k) [ dk-z(h) - crjl(kz) + hjl+l(kz)]ds (fw 

E 

For the growing mode of the density perturbations cs = cbE( $)’ the integral 

can be calculated [Sj (or equivalently we can integrate the Sachs - Wolfe formula). 

The redt iS (sR = rR - 7~): 

km.. 
k-21wz(k)12 [(21+ l)jl(kSR) 

(‘37) 

+ kdh--1 (h) - (1 + l)jl+l (k8R))] ‘dk 

and the first integral term dominates the others. 

The results of observations on medium angular scales are represented in the 

form of the angular correlation function of fluctuations: 

w(e) = & //dW% [;(nl)]R [$-(%)]R6D(eosen -cose) (es) 

which can be expressed using the multipole coefficients ss: 

w(e) = & 52i+ l)(al)sq(COS8) 
I=1 

(69) 
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VI. CONCLUSIONS 

The gauge-invariant approach [2] solves many ambiguities around behavior of 

the large scale perturbations. Its application to the large-scale fluctuations of the 

MBR temperature is presented in this paper. The explicitly gauge-invariant formula 

for these fluctuations (38) is obtained for the wide class of cosmological models based 

on the Robertson - Walker metrics. The only assumptions used in its derivation are 

that all constituents of the universe can be described as perfect fluids and that the 

decoupling of matter and radiation occurs instantanuously on the hypersurface of the 

last scattering. However, relaxing these assumptions will not substantially change 

the results. 

For the most popular model of the flat universe we obtain the multipole coeffi- 

cients of the decomposition of the MBR pattern into spherical harmonics (65). They 

can be explicitly calculated if the equations of motion for baryonic perturbations 

were solved. 

The multipole coefficients and the angular correlation function of fluctuations 

found in a model can be compared with the results of observations to provide valuable 

constraints on parameters of the model. The higher multipole moments were not 

observed yet and we know only the upper limits of the two Srst moments. 

Unfortunately the dipole moment (I = 1) is influenced by the nonlinear, grav- 

ity induced motions of our Galaxy that cannot be reliably subtracted. However, 

the observations (11,121 indicate that the intrinsic dipole moment of MBR can be 

al 5 10-d [12]. 

The recent observational limits on the quadrupole (I = 2) moment compiled 

by Bond and Efstathiou [8] give the value as 5 10e4. 
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Any comparison of W(B) calculated in the model with the observations re- 

quires additional information about the characteristic of the antenna used (see [8] for 

examples). The dipole momentum is usually excluded. 

The reheating of intergalactic medium during star or galaxy formation could 

influence the pattern of the MBR and this effect will be addressed in another paper. 
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